Package: multAbund 0.03.9002

multAbund: Model Multivariate Abundance and Occurence Using the Dirichlet Process Prior

This package provides RJMCMC samplers to make Bayesian inference for Joint Species Distribution models (JSDM) using a Dirichlet Process clustering method. The DP clustering method allows species to be grouped into functional guilds for modeling between species associations in abundance or occurence values at surveyed sites.

Authors:Devin S. Johnson

multAbund_0.03.9002.tar.gz
multAbund_0.03.9002.zip(r-4.5)multAbund_0.03.9002.zip(r-4.4)multAbund_0.03.9002.zip(r-4.3)
multAbund_0.03.9002.tgz(r-4.4-x86_64)multAbund_0.03.9002.tgz(r-4.4-arm64)multAbund_0.03.9002.tgz(r-4.3-x86_64)multAbund_0.03.9002.tgz(r-4.3-arm64)
multAbund_0.03.9002.tar.gz(r-4.5-noble)multAbund_0.03.9002.tar.gz(r-4.4-noble)
multAbund_0.03.9002.tgz(r-4.4-emscripten)multAbund_0.03.9002.tgz(r-4.3-emscripten)
multAbund.pdf |multAbund.html
multAbund/json (API)

# Install 'multAbund' in R:
install.packages('multAbund', repos = c('https://dsjohnson.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/dsjohnson/multabund/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

2.18 score 3 stars 4 scripts 7 exports 14 dependencies

Last updated 3 years agofrom:91880bfd44. Checks:OK: 6 WARNING: 3. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-win-x86_64WARNINGNov 02 2024
R-4.5-linux-x86_64OKNov 02 2024
R-4.4-win-x86_64WARNINGNov 02 2024
R-4.4-mac-x86_64OKNov 02 2024
R-4.4-mac-aarch64OKNov 02 2024
R-4.3-win-x86_64WARNINGNov 02 2024
R-4.3-mac-x86_64OKNov 02 2024
R-4.3-mac-aarch64OKNov 02 2024

Exports:get_opt_alpha_priormake_data_listmult_abund_normmult_abund_poismult_abund_probitmult_abund_zipview_example

Dependencies:ADGofTestcolorspacecopulagsllatticeMatrixmvtnormnumDerivpcaPPpsplineRcppRcppArmadilloRcppProgressstabledist